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Abstract— Thermal cameras can enable autonomous flight
at night without GPS. However, image-based navigation in the
thermal infrared spectrum has been researched significantly
less than in the visible spectrum. In this paper, we demonstrate
closed-loop controlled outdoor flights at night on a quadrotor.
Our state estimator can tightly couple inertial data with either
thermal images at nighttime, or visual images at daytime. It
is integrated in an autonomy framework for motion planning
and control, which runs in real time on a standard embedded
computer. We analyze thermal-inertial odometry performance
extensively from sunset to sunrise, for various thermal non-
uniformity levels, and compare it to visual-inertial odometry at
daytime.

I. INTRODUCTION
The next generation of autonomous drones requires more

than GPS navigation. There is no GPS reception underground
or on other planets. GPS signal may be degraded in urban
canyons, unavailable indoors, jammed in military applica-
tions, or simply not accurate enough for some uses.

Visual-Inertial Odometry (VIO) has become a popular
navigation alternative, as it leverages the accuracy of image
geometric constraints while gaining metric scale, robustness
and high estimation rate from an Inertial Measurement Unit
(IMU). VIO can run in real time on lightweight drones thanks
to the computational cost efficiency of modern Simultaneous
Localization And Mapping (SLAM) algorithms [1], and the
increased performance of embedded computers.

Thermal cameras capture the infrared radiation emitted
by all objects with a temperature above the absolute zero
in their field of view [2]. With the recent progress in
increased resolution, and decreased size, weight, power and
cost of these imagers, Thermal-Inertial Odometry (TIO) now
appears as a promising approach to fly at night without GPS
nor the cost of carrying a lidar sensor, or the range constraint
of illumination-aided solutions. Unlike VIO, which operates
with visible spectrum cameras, TIO has not yet been the
subject of much literature.

The contrast of thermal infrared imagery varies throughout
the day and night as objects with different thermal inertia
heat and cool at different rates. The lowest contrast tends to
occur right around dusk during thermal crossover [3], and at
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dawn when objects have completely cooled down. Therefore
it is important to characterize TIO performance throughout
the night. The uniformity of an uncooled thermal camera
image over a uniform-temperature scene tends to decrease
over time. Although modern cameras have factory-calibrated
non-uniformity corrections, manufacturers still recommend
to periodically perform a Flat-Field Correction (FFC) for
optimal quality [4]. Since FFCs wash out the entire image for
∼ 0.25 s, it is important to evaluate how TIO performance
varies as a function of the time since the last FFC and when
they are required.

This paper aims to demonstrate and characterize the per-
formance of autonomous navigation for flight at night with
thermal imagers. Our contributions are:

• a state estimator able to perform either TIO or VIO in
flight,

• outdoor flight demonstration with TIO and closed-loop
controls at night, as shown in Figure 1,

• an evaluation of TIO performance with respect to time
of night,

• an evaluation of TIO performance with respect to time
since FFC.

Fig. 1: Thermal view of a fully-autonomous quadrotor flight
at night using the proposed thermal-inertial odometry, state
machine and controls framework.

Section II discusses the relevant literature in thermal
and visual-inertial odometry. Section III describes the com-
mon thermal and visual front end, along with the state
estimation architecture. Section IV discusses the hardware
setup, software parameters, control framework as well as the
performance of our system in closed-loop controlled flights.



Section V compares the TIO performance versus time of day,
time since FFC, and VIO.

II. RELATED WORK

A. Visual-inertial odometry

Soon after real-time visual SLAM became possible on
consumer laptops with PTAM [5], the algorithms were
adapted to work with flight trajectories and loosely-coupled
with inertial sensors onboard drones [6]. Even though
progress continues to be made with visual SLAM, VIO has
seen improved results with tightly-coupled approaches [7].
Although tightly-coupled VIO is usually more computation-
ally expensive than loosely-coupled, it is also usually more
accurate and can rely on IMU integration more efficiently in
degraded image conditions.

Approaches can be distinguished as filtering [8], [9] versus
non-linear optimization [10], [11]. In either case, indirect
approaches optimize on feature coordinates [8], [10] while
direct ones optimize on image intensity values [9], [11].
None of these state-of-the-art VIO approaches have been
characterized on thermal night imagery.

B. Thermal odometry

Thermal-based odometry is a much smaller body of liter-
ature than its visible spectrum spectrum counterpart. Due to
the obvious perception challenge, it is interesting to identify
how these approaches process thermal information.

[12] tracks Harris corners through Normalized Cross-
Correlation (NCC) to constrain the proprioceptive odometry
of a car at night [13]. [14] uses optical flow combined with
road plane segmentation and FFC management. [15] uses
SIFT keypoints and descriptors in both visible and thermal
images [16]. [17] tracks ORB features in both RGB and
thermal images [18]. [19] tracks GFTT and FAST features
with KLT [20], [21]. It uses SURF descriptors to match
data before and after a FFC event [22]. [23] also tracks
SURF features but with FREAK descriptors in stereo images
for a UAV [24]. [25] uses direct measurements in 14-bit
monocular images on a UAV.

All these papers demonstrate performance on par with
daytime VIO, using standard computer vision techniques.
This would suggest that thermal image processing is not
more challenging than vision. However, extensive perfor-
mance analysis is still missing from the literature. Only [15]
performs analysis over various types of environments. To
the best of our knowledge, no existing literature has studied
performance for various times of the night, or various times
since FFC.

III. THERMAL / VISUAL INERTIAL ODOMETRY

Our odometry scheme applies image feature constraints
to the state propagated with inertial measurements. The
architecture is illustrated in Figure 2 and is based on an
Extended Kalman Filter (EKF). It is is similar to state-of-
the-art tightly-coupled visual-inertial approaches reviewed in
Subsection II-A.
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Fig. 2: Tightly-coupled estimator architecture capable of
either thermal or visual-inertial odometry. The EKF state is
propagated using the angular rates ω and specific force f
from the IMU. The SLAM module provides the residual z̃,
Jacobian J and covariance matrix R of the feature image
coordinate measurements for the EKF update.

The front end matches features frame to frame from either
a thermal or a visual camera. The best features are inserted
in the EKF state vector to perform thermal or visual-inertial
SLAM, respectively.

A. Front end

We detect FAST features in the image [20], and track them
with the pyramidal implementation of Kanade-Lucas-Tomasi
(KLT) algorithm by [26], [21]. We initially investigated
feature tracking with NCC [27], and adaptive KLT [28] using
the implementation in [29]. We found that the standard KLT
runs faster than the other methods while maintaining similar
tracking accuracy.

We estimate the camera rotation from image 1 to image
2 by integrating the angular velocity measurements coming
from the gyroscopes and use it to initialize KLT for each
feature according to[

d2

0

]
= q21

[
d1

0

]
q−1
21 , (1)

where q21 is the rotation quaternion, d1 and d2 are the
direction vectors in camera frame 1 and 2, respectively.

At feature detection, a neighborhood parameter is defined
in pixels to ensure feature are not too close to each other.
When the number of feature matches falls below a threshold,
FAST features are re-detected on the previous image and
matched with the current one. Existing matches are preserved
in this process. After matching features, Random Sampling
and Consensus (RANSAC) [30] with a fundamental matrix
model is used to remove outliers.

We call tracks the list of all image observations of a
specific feature through time. Although all matches are orga-
nized into tracks, only a limited number of them are used for



SLAM to ensure the computational cost remains low. A track
manager is responsible for selection of these tracks. It divides
the image in tiles and ensures the number of SLAM features
is similar between tiles. This spreads out measurements
across the field-of-view (FOV) to improve pose estimation.
In each tile, at first the features with the highest FAST score
are selected. When a SLAM slot becomes available in a tile,
we select the longest track from the pool of available ones,
and the one with the highest FAST score when several tracks
have the same length.

B. State estimation

Our state vector x =
[
xI

T xV
T
]T

can be divided
between the states related to the IMU xI , and those related
to the camera xV .

The inertial states

xI =
[
piw

T
viw

T
qiw

T
bg
T ba

T
]T

(2)

include the position, velocity and orientation of the IMU
frame {i} with respect to the world frame {w}, the gyro-
scope biases bg and the accelerometer biases ba. We use
rotation quaternions to model orientations.

The vision states

xV =

[
pc1w

T ... pcMw
T qc1w

T ... qcMw
T

f1
T ... fN

T
]T (3)

include the orientations {qciw}i and positions {pciw}i of the
camera frame at the last M image time instances, along
with the 3D coordinates of N features

{
f j
}
j
. Each feature

state f j =
[
αj βj ρj

]T
represents the inverse-depth

parametrization of world feature pj with respect to an anchor
pose

{
cij
}

selected from the sliding window of poses.
Inverse-depth is used due to its improved depth convergence
properties for SLAM [31].

We model the dynamics of our system with the time-
varying IMU measurements

ṗiw = viw
v̇iw = C(qiw)

T (aIMU − ba − na) + wg

q̇iw = 1
2Ω(ωIMU − bg − ng)qiw

ḃg = nbg
ḃa = nba

(4)

where n? are zero-mean Gaussian white noise disturbing
the IMU measurements and modeling the biases as a ran-
dom walk, and C(q) denotes the coordinate change matrix
associated to a quaternion q. The operator Ω is defined by

Ω(ω) =

[
0 −ωT
ω −bω×c

]
, (5)

where bω×c =

 0 −ωz ωy
ωz 0 −ωx
−ωy ωx 0

 . (6)

The state estimate is propagated at IMU rate and at first order
using [32], [33].

We can express the cartesian coordinates of feature pj in
camera frame {ci} as

cipj =
[
cixj

ciyj
cizj

]T
(7)

= C(qciw )

(
p
cij
w +

1

ρj
C(q

cij
w )T

αjβj
1

− pciw
)
. (8)

The associated visual measurement in SLAM is the pinhole
projection of pj over the normalized image plane f = 1 of
camera frame {ci}

izj =
1

cizj

[
cixj
ciyj

]
+ inj (9)

where inj is a zero-mean white Gaussian feature measure-
ment noise. This measurement can be linearized about the
state estimate x̂

iδzj '
Hpij

δp
cij
w +Hpi

δpciw +Hθij
δθ

cij
w

+Hθiδθ
ci
w +Hfj

δf j +
inj

(10)

with

Hpij
= iJ jC(q̂ciw ) (11)

Hpi
= −iJ jC(q̂ciw ) (12)

Hθij
= − 1

ρ̂j
iJ jC(q̂ciw )C(q̂

cij
w )T

α̂jβ̂j
1

×
 (13)

Hθi =

iJ j

⌊
C(q̂ciw )

(
p̂
cij
w − p̂ciw

+
1

ρ̂j
C(q̂

cij
w )T

α̂jβ̂j
1

)× ⌋ (14)

Hfj
=

1

ρ̂j
iJ jC(q̂ciw )C(q̂

cij
w )T

1 0 − α̂j

ρ̂j

0 1 − β̂j

ρ̂j

0 0 − 1
ρ̂j

 (15)

where iJ j = 1
ci ẑj

[
I2 −ẑj

]
. Note that when i = ij ,

ijδzj =

[
δαj
δβj

]
. Since SLAM measurements are applied at

every frame, they correspond to the latest pose in the sliding
window and in practice i =M . As poses enter and exit the
sliding window, ultimately the anchor pose

{
cij
}

will not be
part of the state vector any more. To prevent this and keep
using Eq. (10) in the EKF update, we reparametrize pj to a
new anchor at the start of the sliding window as in [34].

In our implementation, the pose states may also be used
to perform MSCKF updates in addition to SLAM similarly
to [35]. However, MSCKF with a first-in first-out sliding
window scheme is only useful when the state poses cover
a large enough baseline, which is not the case at standard
image frame rate and UAV speeds [36]. It was therefore
not used in our testing, and is not detailed here. Our
complete implementation is fully detailed with Jacobians
either referenced, or derived in [37].



IV. TEST FLIGHTS
A. Hardware

The quadrotor test platform in Figure 3 was built with parts
available off the shelf. It is based on a Lumenier QAV400
airframe with the motors, propellers, and electronic speed
controllers suggested by Lumenier. We selected Pixhawk
Mini as our autopilot and set it up with the PX4 flight
stack [38]. The embedded computer is a Nvidia Jetson TX2
module, which comes equipped with 6 ARMv8 CPU cores
running at up to 2.5 GHz, and 8GB of memory.

Fig. 3: Quadrotor platform equipped with a FLIR Boson
thermal camera, a MATRIX VISION mvBlueFOX-MLC
visible camera, a ICM20608 IMU inside a Pixhawk Mini
autopilot, and a Nvidia Jetson TX2 computer.

Our thermal sensor is the industrial version of the FLIR
Boson camera core with with a lens providing a 95-deg
field of view (FOV). It delivers 640 × 512 images in the
7.5µm − 13.5µm longwave infrared spectral range, with a
thermal sensitivity under 40 mK and a 8-ms time constant.
The visible camera is a MATRIX VISION mvBlueFOX-
MLC200WC equipped with a ∼ 140-deg FOV lens. We used
the ICM20608 IMU on board the Pixhawk mini.

The thermal camera was calibrated with the Kalibr tool-
box [39], after leaving the target approximately 5 minutes in
the sun. The target uses a circle grid pattern laminated over
a Gatorfoam board.

B. Software settings

All our software runs on Ubuntu 16.04 with ROS Kinetic.
Both camera drivers were set to grab 8-bit images at 30
fps with auto-exposure. The IMU runs at 200 Hz. The state
estimation and autonomy software run in real time on the
Jetson TX2.

Table I specifies the front end settings that were modified
from the default values in OpenCV 3.3.1 for FAST detection
and KLT tracking. The state estimator was initialized at zero-
velocity, level attitude, and feature initial depth at the default
commanded waypoint height with uncertainty matching the
observed terrain distribution (±15 cm, 3σ).

TABLE I: Front-end settings.

FAST detection threshold 20
Neighborhood margin (pixels) 40

KLT window size (pixels) 7x7
KLT max pyramidal level 3

KLT minimum eigen threshold 0.003
RANSAC error threshold (pixels) 1.0
RANSAC probability threshold 0.999

C. Autonomy Framework

Fig. 4: Diagram of the state machine for closed-loop flights.

Figure 4 illustrates the state machine that was used to
navigate the environment through a set of known waypoints
and commit to a landing. The idle state upon startup com-
mands the quadrotor to hover in place. Once the operator
sends a start command, the state switches to waypoint-
following, which specifies the trajectory for our test flights.
It interpolates a trajectory between each waypoint and sends
setpoints to the position controller, which runs independent
of the state machine. When the last waypoint is reached, we
send the vehicle on a vertical trajectory down to land.

We use the popular cascaded control architecture as used
in [40]. The position controller runs on the TX2 and uses a
PID-based feedback control policy with feedforward terms
from the trajectory generated from the waypoint state. The
position controller sends the desired attitude and thrust
commands to the PX4 flight stack which runs a globally
stable non-linear attitude controller based on unit quaternions
[41] on the Pixhawk Mini. It generates a desired thrust
per motor and sends commands to the ESCs to control the
angular velocities of the motors.

D. Closed-loop controlled flights

We demonstrated outdoor autonomous flight with way-
point navigation and landing at night in the Mars Yard at
JPL using the framework in Figure 4. Position and velocity
estimates from thermal-inertial odometry were used to close
the control loop.



The state estimator was initialized with the quadrotor on
a platform 50cm tall, to allow for the thermal camera to
see some features on the ground upon startup. A safety
pilot would take off manually and maintain hover flight, and
switch to autonomous controls if state estimator and control
outputs were nominal.

The quadrotor would then proceed to follow a 2m×2m
square pattern and attempt to land on a 1m×1m landing pad
at the end of it. While ground truth was not available at the
time of these tests, the system demonstrated 5 successful
flights, and landing on the platform. The video in the
supplemental materials of this paper shows one of these
flights.

V. PERFORMANCE ANALYSIS

A. Dataset with ground truth

We collected an extensive dataset to characterize the sen-
sitivity of the thermal-inertial state estimation demonstrated
in Subsection IV-D to the variation of terrain appearance in
the thermal waveband for various times of the night. We also
collected an independent dataset to evaluate the effect of the
time elapsed since the last FFC at the same time of the night.

The ground truth pose was provided by 7 OptiTrack
Prime41 motion capture cameras at 120 Hz. One can gener-
ally expect millimeter position and sub-degree orientation
performance. Even though these cameras are branded for
outdoor capture in sunlight, the pose output showed outliers
around sunset and sunrise when the sun was in the field
of view. To eliminate these, we filtered the OptiTrack pose
with the IMU. Since our state estimation is using the
same IMU, one could argue that our ground truth is no
longer independent. However, since ground truth accuracy
is much better than IMU-only accuracy, sharing the same
IMU between the navigation and ground truth filters still
allows reasonable comparison of errors. These flights used
the autonomy framework from Section IV-C with the quadro-
tor flown with closed-loop controls. We used the ground
truth motion capture system as a position control input to
guarantee that the trajectory flown and the scene observed
remain the same independent of thermal-inertial odometry
errors.

The first dataset includes flights approximately every hour
from 1 hour before sunset until 2 hours after sunrise. A
FFC was performed on the camera before each flight so as
to keep its effect separate. Figure 5 illustrates the various
appearances of the same terrain throughout the night on a
thermal camera.

The second dataset includes flights every 5 minutes with-
out a FFC being triggered, and up to 34 mins after FFC. We
attempted to collect this dataset as much as possible at the
same time of the night. However since the battery had to be
swapped, we had to wait to resume at the same time since
FFC, and the overall dataset spans 52 minutes.

This dataset was acquired between February 7-8, 2019 in
Pasadena, CA. The sun set and rose at 5:29 p.m. and 6:44
a.m., respectively. The weather was sunny on both days. For
all the results in this section, state estimation is initialized

(a) before sunset (4:32 p.m.) (b) after sunset (5:40 p.m.)

(c) before sunrise (6:30 a.m.) (d) after sunrise (7:53 a.m.)

Fig. 5: Variation of thermal image appearance throughout the
night. Sunset and sunrise provide the most sudden changes.

at the beginning of the 2m square pattern, without prior
excitation.

B. TIO vs. VIO

Visual-inertial odometry performance is a useful reference
to evaluate thermal-inertial odometry performance on our
system. In addition to the two datasets, we performed a
reference flight with the visible camera during daytime. The
position estimate of our VIO state estimator is compared to
TIO running with the same parameters in Figure 6.
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(b) VIO at daytime

Fig. 6: Top view of the trajectory estimate (blue) and ground
truth (red) at night (6:30 a.m.) with thermal camera (left), and
during the day (8:41 a.m.) with the visible camera (right).

For this comparison, we picked the thermal sequence
in which the images seemed to have the least amount of
contrast to stress our system. It was acquired at 6:30 a.m.,
just before the local sunrise, after the ground had cooled
off all night. At the end of the sequence, TIO had drifted
1.6% of the distance, versus 2.1% for VIO. While state-
of-the-art VIO results can be under 1%, we believe this
performance is on par given the absence of excitation, the
IMU noise characteristics, and the vibration levels during
flight. A comparison with the rest of literature is the subject
of on-going work as it requires dedicated understanding and



adaptation of each algorithm to be fair. Overall, although
thermal infrared imagery provides typically low contrast
images with less features, in our results it provided odometry
constraints at nighttime as efficient as vision at daytime.

C. State Estimation versus Time of Day

Figure 7 shows the final position error drift over the same
trajectory throughout the night.

Fig. 7: Thermal-inertial final position estimation error drift at
various times of the night. The period between local sunset
and sunrise is shown in gray. VIO performance is shown for
reference.

Drift remains within 3.5% on all flights. We were able to
correlate all errors above 2% to trajectories where the height
controlled through OptiTrack was up to 70 cm below the
2m reference height, due to to the loose gains the controller
was unfortunately set to. When flying closer to the ground,
the authors noticed the feature depth uncertainty had a larger
impact.

With proper settings, there seems to be no correlation
between the time of the night and the thermal-inertial odom-
etry performance. Although the image contrast goes down,
{FAST+KLT} can still be set to track correctly. We highlight
the importance of raising the FAST feature threshold, as well
as the minimum eigenvalue in KLT with respect to VIO.
In our setting, the minimum eigenvalue had to be tripled
with respect to the default value used in VIO. Without this
change, a significant number of FAST features would drift
erroneously with KLT in the thermal image.

D. State Estimation versus Time since FFC

Figure 8 shows the evolution of the TIO performance up to
34 min since the last FFC. The dataset was acquired between
10:32 p.m. and 11:24 p.m.

Fig. 8: Thermal-inertial position estimation error for various
times since FFC.

We note no evident correlation between performance and
FFC. The performance at FFC + 1 min is slightly worse, but
that is also the closest flight to the ground of the two datasets
and has the worst overall performance. For the same reason
mentioned in Subsection V-C, we believe this performance

variation is unrelated to the FFC itself. Figure 9 shows a
sample image and the trajectory reconstruction immediately
after FFC, and 34 min later.
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(b) NUC + 34 min

Fig. 9: Sample thermal image after FFC + 1 min, and at
FFC + 34 min (top). Corresponding position estimate in
blue and ground truth in red (bottom). In our sequences,
not proceeding to a FFC led to a white veil on the bottom
side of the image, which does not affect state estimation over
the battery flight time.

At FFC + 34 min, one can notice the image contrast drops,
especially at the bottom edge of the field of view. However,
this did not represent a large view angle and feature tracking
appears unaffected in our tests. Our TIO solution can survive
without features for the duration of a FFC on the Boson
camera (∼0.25s), but this is an important result for thermal-
only odometry solutions that typically break during FFC in
the absence of loop closure, as all feature tracks are lost.
During the lifetime of our quadrotor battery, which is less
than 30 min, thermal-based navigation is not affected by non-
uniformities.

VI. CONCLUSION
This paper has presented a state estimation architecture

that can perform TIO with a thermal-spectrum camera, or
VIO with a visible-spectrum camera. We highlighted the
importance of raising the FAST feature detection threshold,
as well as the minimum eigenvalue in KLT with respect to
VIO. Our state estimation was integrated inside an autonomy
framework which runs in real time on-board an off-the-
shelf drone. We demonstrated closed-loop controlled flight
with waypoint navigation and landing at nighttime with
the thermal camera. An extensive dataset was collected for
various times of the night, and various times since FFC. TIO
performed similarly throughout the night, and on par with
VIO during the day. TIO was not affected by the thermal
sensor non-uniformities during at least the 34 min that we
tested, which is longer than most drone batteries last.

These results indicate that TIO is a viable alternative to
GPS for autonomous flights at night time, just like VIO



at daytime. However, TIO is just in its infancy and many
areas need to be characterized or improved. Extensive testing
similar to the one presented here needs to be conducted
over various types of terrain, and various weather conditions.
Thermal feature tracks with our {FAST+KLT} front end ap-
peared at least less numerous than visual tracks over the same
scene. This did not affect performance in our flights, which
happened at relatively low speed (∼ 0.3 m/s). However,
demonstrating aggressive maneuvers at night may require
different processing, e.g. due to the rolling shutter read-out
architecture or relatively long time constant (∼ 8 ms) of
uncooled thermal cameras.
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